METADATA IN ENGLISH
About the journal
NAUKA I TEKHNOLOGICHESKIE RAZRABOTKI (SCIENCE AND TECHNOLOGICAL DEVELOPMENTS), ISSN: 2079-5165, eISSN: 2410-7948, DOI: 10.21455/std; https://elibrary.ru/title_about.asp?id=32295; http://std.ifz.ru/. The journal was founded in 1992.
EXPERIMENTAL
STUDY OF HIGH-PRECISION NAVIGATION SUPPORT TECHNIQUE BASED ON THE
PRECISE POINT POSITIONING TECHNOLOGY USING A MOBILE LAB
ON ROAD
VEHICLE
A.A. Spesivtsev1,2,3, P.S. Mikhailov1,2, V.V. Pogorelov1,2, I.M. Aleshin1 , S.D. Ivanov1, F.V. Perederin1 , K.I. Kholodkov1
1 Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow, Russia
2 Sirius University of Science and Technology, Sochi, Russia
3 Center of Geodesy, Cartography and SDI, Moscow, Russia
Corresponding author: V.V. Pogorelov, e-mail: vvp@ifz.ru
Highlights
– Improving of positioning accuracy based on data from Global Navigation Satellite Systems (GNSS)
– Mobile vehicle research laboratory
– Precise Point Positioning (PPP) technology application
– Results of experimental navigation measurements on submeridional profiles with a length of about 2500 km
Abstract. The perspective application of the Precise Point Positioning (PPP) satellite positioning technology for high-precision navigation support of geophysical surveys, especially when it is performed in hard-to-reach regions and over water areas, is substantiates in this paper. An experimental technique for studying PPP technology using a mobile research laboratory (MRL) based on a car and assessing its applicability for solving geophysical problems is proposed. The results of experimental navigation measurements on the submeridional profiles «Moscow-Arkhangelsk» and «Moscow-Sevastopol» are presented.
Keywords: satellite navigation, navigation support, Precise Point Positioning, PPP, mobile vehicle research laboratory, Global Navigation Satellite Systems, GNSS, GPS, digital elevation model, DEM, relief, Earth Gravitational Model, extended profiles
Cite this article as: Spesivtsev A.A., Mikhailov P.S., Pogorelov V.V., Aleshin I.M., Ivanov S.D., Perederin F.V., Kholodkov K.I. Experimental study of high-precision navigation support technique based on the Precise Point Positioning technology using a mobile lab on road vehicle, Nauka i Tekhnologicheskie razrabotki (Science and Technological Developements), 2020, vol. 99, no. 4, pp. 53–68. [in Russian]. https://doi.org/10.21455/std2020.4-3
Funding
This study was performed under State Task of Schmidt Institute of Physics of the Earth RAS and supported by the Russian Foundation for Basic Research, project no. 19-35-51014.
Ethics declarations
The authors declare that there is no conflict of interest.
English translation of the article will be published in Seismic Instruments, ISSN: 0747-9239 (Print)
1934-7871 (Online), https://link.springer.com/journal/11990)
References
Aleshin, I.M., Alpatov, V.V., Vasiliev, A.E., Kholodkov, K.I., Burguchev, S.S., Data Handling in GNSS Receiver Network and Ionosphere Monitoring Service Solution, Engineering and Telecommunication (EnT), International Conference, 2014, pp. 122–125. http://ieeexplore.ieee.org/document/7121446/
Aleshin, I.M., Burguchev, S.S., Perederin, F.V., Kholodkov, K.I., Versatile Geophysical Data Acquisition System, Seismic Instruments, 2018, vol. 54, no. 5, pp. 562–564. https://doi.org/10.3103/S074792391805002X
Antonovich, K.M., Ispol'zovanie sputnikovyh radionavigacionnyh sistem v geodezii (The use of satellite radio navigation systems in geodesy, vol. 1, Moscow: FGUP “Cardgeocenter”, 2005, 334 p. [in Russian].
Вurton, A.M., Improving the Accuracy and Resolution of SINS/DGPS Airborne Gravimetry, PhD thesis, University of Calgary, Alberta, Canada, 2000. 235 p.
Drobyshev, N.V., Koneshov, V.N., Pogorelov, V.V., Solovyev, V.N., Rozhkov, Yu.E., Specific features of the technique of airborne gravity surveys at high latitudes, Izvestiya, Physics of the Solid Earth, 2009, vol. 45, no. 8, pp. 656–660. https://doi.org/10.1134/S1069351309080059
Drobyshev N.V., Koneshov V.N., Pogorelov V.V., Mikhailov P.S., Airborne Laboratory for Gravity Field Research, Seismic Instruments, 2019, vol. 55, no. 6, pp. 705–719. https://doi.org/10.3103/S0747923919060033
International GPS Service. The IGS 2001/2002 Annual Report, IGS Central Bureau Information System (CBIS), 56 p. ftp://igs.org/pub/resource/pubs/2001-02annrpt.pdf
Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database, 2008. http://srtm.csi.cgiar.org
Koneshov, V.N., Solovyev, V.N., Pogorelov, V.V., Nepoklonov, V.B., Afanasyeva, L.V., Drobyshev, M.N., Airborne gravity survey for estimation of regional uncertainties in gravity anomalies derived from modern Earth gravitational models, Geofizicheskie issledovaniya (Geophysical Research), 2016, vol. 17, no. 3, pp. 5–16. [in Russian].
Kouba, J., Héroux, P., Precise point positioning using IGS orbit and clock products, GPS Solutions, 2001, vol. 5, no. 2, pp. 12–28. https://doi.org/10.1007/pl00012883
Laurichesse, D., Privat, A., An Open-source PPP Client Implementation for the CNES PPP-WIZARD Demonstrator, Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2015), Tampa, Florida, USA, Tampa Convention Center, 2015, pp. 2780–2789.
Laurichesse, D., Mercier, F., Berthias, J.P., Real-time PPP with Undifferenced Integer Ambiguity Resolution, Experimental Results, Proceedings of the 23rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2010), Portland, Oregon, USA, Oregon Convention Center, 2010, pp. 2534–2544.
Mogilevskiy, V.Е., Pavlov, S.А., Vysokotochnaya aerogravimetricheskaya s"emka na shel'fe (High precision airborne gravity survey on the shelf), Official website of AO «GNPP Aerogeofizika», 2009. Link: http://aerogeo.ru/index.php?option=com_content&view=article&id=76%3A2009-10-15-13-37-44&catid=18%3A2009-06-23-04-49-37&Itemid=21&lang=ru [in Russian].
Perederin, F.V., Aleshin, I.M., Ivanov, S.D., Mikhailov, P.S., Pogorelov, V.V., Kholodkov, K.I., Portable GNSS Signal Recording System with a High Sampling Rate: Field Tests and Application Forecasts, Seismic Instruments, 2019, vol. 55, no. 6, pp. 720–726. https://doi.org/10.3103/ S0747923919060069
Pogorelov, V.V., Solovyev, V.N., Koneshov, V.N., Mikhailov, P.S., Experimental study of acceptable distance of laboratory aircraft from the base station in airborne gravity survey, Nauka i Tekhnologicheskie razrabotki (Science and Technological Developments), 2018, vol. 97, no. 4, pp. 41–75. https://doi.org/10.21455/std2018.4-3 [in Russian].
Rexer, M., Hirt, C., Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database, Australian J. Earth Sci., 2014, vol. 61, no. 2, pp. 213–226. https://doi.org/ 10.1080/08120099.2014.884983
Rodriguez, E., Morris, C.S., Belz, J.E., Chapin, E.C., Martin, J.M., Daffer, W., Hensle, S., An assessment of the SRTM topographic products, Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena, California, 2005, 143 p.
Studinger, M., Bell, R., Frearson, N., Comparison of AIRGrav and GT-1A airborne gravimeters for research applications, Geophysics, 2008, vol. 73, no. 6, pp. 151–161. https://doi.org/ 10.1191/1.2969664
Xincun, Y., Yongzhong, O., Yi, S., Kailiang, D., Application of Precise Point Positioning technology in airborne gravity, Geodesy and Geodynamics, 2014, vol. 5, no. 4, pp. 68–72. https://doi.org/10.3724/SP.J.1243.2014.04068
Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H., Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res. Solid Earth, 1997, vol. 102 (B3), pp. 5005–5017. https://doi.org/10.1029/96JB03860
About the authors
SPESIVTSEV Aleksander Aleksandrovich – Schmidt Institute of Physics of the Earth RAS. Russia, 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1; Sirius University of Science and Technology. Russia, 354340, Sochi, Olympic Avenue 1; Center of Geodesy, Cartography and SDI. Russia, 125413, Moscow, Onezhskaya ul., 26, stroenie 1,2. E-mail: spesivtsev.a.a@gmail.com
MIKHAILOV Pavel Sergeevich – Schmidt Institute of Physics of the Earth RAS. Russia, 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1; Sirius University of Science and Technology. Russia, 354340, Sochi, Olympic Avenue 1. E-mail: paulmikh@mail.ru
POGORELOV Vitaly Viktorovich – Schmidt Institute of Physics of the Earth RAS. Russia, 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1; Sirius University of Science and Technology. Russia, 354340, Sochi, Olympic Avenue 1. E-mail: vvp@ifz.ru
ALESHIN Igor Mikhailovich – Schmidt Institute of Physics of the Earth RAS. Russia, 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. E-mail: ima@ifz.ru
IVANOV Stanislav Dmitrievich – Schmidt Institute of Physics of the Earth RAS. Russia, 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. E-mail: f0ma@ifz.ru
PEREDERIN Fedor Viktorovich – Schmidt Institute of Physics of the Earth RAS. Russia, 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. E-mail: crash@ifz.ru
KHOLODKOV Kirill Igorevich – Schmidt Institute of Physics of the Earth RAS. Russia, 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. E-mail: keir@ifz.ru