Применение независимого конечноэлементного моделирования


УДК 550.837.311 + 550.8.08


ПРИМЕНЕНИЕ НЕЗАВИСИМОГО КОНЕЧНОЭЛЕМЕНТНОГО МОДЕЛИРОВАНИЯ ДЛЯ ОЦЕНКИ ВЛИЯНИЯ
ПРОСТЕЙШИХ ФОРМ РЕЛЬЕФА
НА РЕЗУЛЬТАТЫ ИНВЕРСИИ ДАННЫХ ЭЛЕКТРОТОМОГРАФИИ (НА ПРИМЕРЕ РВА ТРЕУГОЛЬНОГО СЕЧЕНИЯ)


© 2019 г. П.А. Казначеев1, И.Ю. Попов2, И.Н. Модин2, Р.А. Жостков1


1 Институт физики Земли им. О.Ю. Шмидта РАН, г. Москва, Россия

2 Московский государственный университет им. М.В. Ломоносова, г. Москва, Россия

Автор для переписки: П.А. Казначеев, e-mail: p_a_k@mail.ru


Главное

разработан новый методический подход к оценке влияния рельефа дневной поверхности на результаты инверсии данных электротомографии

по результатам численного моделирования методом конечных элементов показана эффективность данного подхода на примере рельефа в виде рва прямоугольного сечения

показано, что использование конечноэлементного моделирования позволяет достичь точности, сопоставимой с точностью аналитического решения (на примере горизонтально-однородной трехслойной среды)


Аннотация. При решении задач малоглубинной электроразведки рельеф дневной поверхности является фактором, оказывающим существенное влияние на результаты инверсии данных электротомографии. Верификация результатов инверсии полевых данных – очень трудоемкая задача в силу сложной структуры реальной геологической среды. В то же время развитие методов компьютерного численного моделирования позволяет получить данные электротомографии для простых моделей среды. В работе представлены результаты оценки влияния простейших форм рельефа на результаты инверсии данных томографии, полученных с помощью численного моделирования, на примере модели рва треугольного сечения. Численное моделирование выполнено на основе метода конечных элементов независимым от инверсии способом. Определено, что при инверсии данных томографии для рва в однородном полупространстве возникают ложные аномалии, максимальная из которых находится под нижней точкой рва. Отдельно показано, что при наличии реальной неоднородности в указанном положении, она может в зависимости от своего сопротивления как маскироваться (компенсироваться) ложной аномалией, так усиливать её. Если ров находится в двухслойной среде, то наблюдается искажение границы слоев на некотором интервале подо рвом, в виде повторения формы рва.


Ключевые слова: электротомография, рельеф, форма рельефа, инверсия, численное моделирование, метод конечных элементов, ров треугольного сечения


Цитируйте эту статью как: Казначеев П.А., Попов И.Ю., Модин И.Н., Жостков Р.А. Применение независимого конечноэлементного моделирования для оценки влияния простейших форм рельефа на результаты инверсии данных электротомографии (на примере рва треугольного сечения) // Наука и технологические разработки. 2019. Т. 98, № 1. С.21–34. [Тематический выпуск “Методические аспекты применения электромагнитных методов в геофизических исследованиях”]. https://doi.org/10.21455/std2019.1-2






Литература


Вишняков С.В., Гордюхина М.Н., Федорова Е.М. Расчет электромагнитных полей с помощью программного комплекса ANSYS. М.: МЭИ, 2003. 98 c.

Демирчян К.С., Чечурин В.Л. Машинные расчёты электромагнитных полей. М.: Высшая школа, 1986. 239 с.

Жданов М.С. Электроразведка. М.: Недра, 1986. 316 с.

Казначеев П.А. Разработка и исследование комплекса средств активного геоэлектрического мониторинга с использованием локальных измерителей тока: автореф. дис. … канд. техн. наук. М., 2014. 28 с.

Казначеев П.А., Камшилин А.Н., Попов В.В. Измерение локальной плотности тока в земной коре // Вестник МЭИ. 2011. № 5. С.57–63.

Светов Б.С. Основы геоэлектрики. М.: ЛКИ, 2008. 656 с.

Чантуришвили Л.С. Специальные задачи электроразведки при проектировании дорог. М.: Транспорт, 1983. 125 с.

EarthImager 2D resistivity imaging. Site about two-dimensional inversion modeling software for affordable resistivity and induced polarization (IP) imaging. – AGI. 2019. URL: https://www.agiusa.com/agi-earthimager-2d

Kaminsky A.E. ZondRes2D. Program for two-dimensional interpretation of data obtained by resistivity and induced polarization methods. – Zond Geophysical Software, Saint-Petersburg (Russia). 2016. 167 p. URL: http://zond-geo.com/zfiles/Zondres2d.zip/ ZondRes2D_еng.pdf

Loke M.H. Electrical resistivity surveys and data interpretation / Ed. H.Gupta // Solid Earth Geophysics Encyclopedia (2-nd Edition) “Electrical & Electromagnetic”. Springer-Verlag, 2011. P.276–283.

Loke M.H. RES2DINVx64 ver. 4.09 for Windows 7/8/10. Rapid 2-D Resistivity & IP inversion using the least-squares method. – Geotomo Software Sdn Bhd. 2019. URL: http://geotomosoft.com/ r2dimanu.zip/Res2dinvx64.pdf

Loke M.H. Topographic modelling in resistivity imaging inversion // 62-nd EAGE Conference & Technical Exhibition Extended Abstracts. 2000, D-2.

Loke M.H., Wilkinson P.B., Chambers J. E., Meldrum P.I. Rapid inversion of data from 2-D resistivity surveys with electrodes displacements // Geophysical Prospecting. 2018. V. 66, N. 3. P.579–594. DOI: 10.1111/1365-2478.12522

Loke M.H., Chambers J.E., Rucker D.F., Kuras O., Wilkinson P.B. Recent developments in the direct-current geoelectrical imaging method // Journal of Applied Geophysics. 2013. V. 95. P.135–156.

Mirgalikyzy T., Mukanova B., Modin I. Method of integral equations for the problem of electrical tomography in a medium with ground surface relief // Journal of Applied Mathematics. 2015. V. 2015. Art. ID 207021. P.1–10. DOI: 10.1155/2015/207021

Pryor R. Multiphysics modeling using COMSOL. Jones and Bartlett Publishers, 2011. 871 p.

Robain H., Bobachev A. X2IPI. Tool box for 2D DC measurements with SYSCAL equipment. User manual. – Официальный сайт программы x2ipi. 2017. URL: http://media.voog.com/0000/ 0038/0901/files/X2IPI_manual.pdf

Zhostkov R.A. Improving certain means of seismic exploration by using data on Rayleigh wave scattering on relief // Bulletin of the Russian Academy of Sciences: Physics. 2018. V. 82, N. 11. P.1416–1420.


Сведения об авторах


КАЗНАЧЕЕВ Павел Александрович – кандидат технических наук, старший научный сотрудник, Институт физики Земли им. О.Ю. Шмидта РАН. 123242, Москва, ул. Большая Грузинская, д. 10, стр. 1. Тел.: +7(499) 254-23-40. E-mail: p_a_k@mail.ru


ПОПОВ Игорь Юрьевич – студент, Московский государственный университет им. М.В. Ломоносова. 119991, ГСП-1, Москва, Ленинские горы, д. 1. Тел.: +7(495) 939-49-63. E-mail: igo3427@yandex.ru


МОДИН Игорь Николаевич – доктор технических наук, профессор, Московский государственный университет им. М.В. Ломоносова. 119991, ГСП-1, Москва, Ленинские горы, д. 1. Тел.: +7(495) 939-49-63. E-mail: imodin@yandex.ru


ЖОСТКОВ Руслан Александрович – кандидат физико-математических наук, старший научный сотрудник, Институт физики Земли им. О.Ю. Шмидта РАН. 123242, г. Москва, ул. Большая Грузинская, д. 10, стр. 1. Тел.: +7(499) 254-90-80. E-mail: shageraxcom@yandex.ru.


METADATA IN ENGLISH


About the journal


NAUKA I TEKHNOLOGICHESKIE RAZRABOTKI (SCIENCE AND TECHNOLOGICAL DEVELOPMENTS), ISSN: 2079-5165, eISSN: 2410-7948, DOI: 10.21455/std; https://elibrary.ru/title_about.asp?id=32295; http://std.ifz.ru/. The journal was founded in 1992.


APPLICATION INDEPENDENT FINITE ELEMENT MODELING
TO ESTIMATION OF EFFECT OF LANDFORM ON RESULTS
OF INVERSION OF ELECTRICAL RESISTIVITY TOMOGRAPHY DATA (EXAMPLE OF TRENCH OF TRIANGULAR CROSS-SECTION)


P.A. Kaznacheev1, I.Yu. Popov2, I.N. Modin2, R.A. Zhostkov1


1 Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow, Russia

2 Lomonosov Moscow State University, Moscow, Russia

Corresponding author: P.A. Kaznacheev, e-mail: p_a_k@mail.ru


Highlights

The new technical approach to estimation of effect of the surface relief on results of inversion of electrical resistivity tomography data has been developed

Based on results of numerical modeling by finite element method, the effectiveness of this approach is shown on the example of relief of a trench of rectangular cross-section

It is shown that finite element modeling allows to achieve the accuracy comparable to the accuracy of analytical solution (on the example of horizontally homogeneous three-layer medium)


Abstract. In solving of problems of shallow electrical survey, a relief is a factor that has significant impact on result of inversion of field electrical resistivity tomography data. It’s verification is a very difficult task due to the complex structure of the real geological environment. At the same time, the development of computer numerical modeling methods allows obtaining electrical resistivity tomography data for simple models. The paper presents an estimation of effect of the simplest landforms on the results of the inversion of electrical resistivity mography data. Data is obtained by numerical modeling based on the finite element method at the same time by an inversion-independent technique, on the example of the model of the trench of triangular cross-section. It is determined that the inversion for the trench in homogeneous half-space produces false anomalies, the maximum of which is located under the axis of the trench. Separately, it is shown that in the presence of real inhomogeneity in this position, it can, depending on its resistance, be masked (compensated) by the maximum of false anomalies, or strengthen it. If the trench is in two-layer medium, then there is distortion of the boundary between the layers at some interval under the trench, shaped like it.


Keywords: electrical resistivity tomography, topography, relief, landform, inversion, numerical modeling, finite element method, trench of triangular cross-section.


Cite this article as: Kaznacheev P.A., Popov I.Yu., Modin I.N., Zhostkov R.A. Application independent finite element modeling to estimation of effect of landform on results of inversion of electrical resistivity tomography data (example of trench of triangular cross-section), Nauka i Tekhnologicheskie Razrabotki (Science and Technological Developments), 2019, vol. 98, no. 1, pp. 21–34. [Special issue “Methodological aspects of the application of electromagnetic methods in geophysical research”]. [in Russian]. https://doi.org/10.21455/std2019.1-2


References


Chanturishvili, L.S., Spetsial'nye zadachi elektrorazvedki pri proektirovanii dorog (Special tasks of electrical prospecting in road design), Moscow: Transport, 1983.

Demirchyan, K.S., Chechurin, V.L., Mashinnyi raschety elektromagnitnykh polei (Computer calculations of electromagnetic fields), Moscow: Vysshaya shkola, 1986.

EarthImager 2D resistivity imaging. Site about two-dimensional inversion modeling software for affordable resistivity and induced polarization (IP) imaging, AGI, 2019, URL: https://www.agiusa.com/agi-earthimager-2d

Kaminsky, A.E., ZondRes2D. Program for two-dimensional interpretation of data obtained by resistivity and induced polarization methods, Saint-Petersburg (Russia): Zond Geophysical Software, 2016, URL: http://zond-geo.com/zfiles/Zondres2d.zip/ ZondRes2D_еng.pdf

Kaznacheev, P.A., Development and Study of Tools Complex for Active Geoelectical Monitoring with the Use of Local Current Measuring Devices, Cand. Sci. (Tech.) Dissertation, Moscow: Inst. Phys. Earth Russ. Acad. Sci., 2014.

Kaznacheev, P.A., Kamshilin, A.N., and Popov, V.V., Measurement of local current density in the crust, Vestn. Mosk. Energ. Inst., 2011, no. 5, pp. 57–63.

Loke, M.H., Chambers, J.E., Rucker, D.F., Kuras, O., Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method, Journal of Applied Geophysics, 2013, vol. 95. pp. 135–156.

Loke, M.H., Electrical resistivity surveys and data interpretation, in Gupta H. (ed.), Solid Earth Geophysics Encyclopedia (2-nd Edition) “Electrical & Electromagnetic”, Springer-Verlag, 2011, pp. 276–283.

Loke, M.H., RES2DINVx64 ver. 4.09 for Windows 7/8/10. Rapid 2-D Resistivity & IP inversion using the least-squares method, Geotomo Software Sdn Bhd, 2019, URL: http://geotomosoft.com/ r2dimanu.zip/Res2dinvx64.pdf

Loke, M.H., Topographic modelling in resistivity imaging inversion, in 62-nd EAGE Conference & Technical Exhibition Extended Abstracts, 2000, D-2.

Loke, M.H., Wilkinson, P.B., Chambers, J. E., Meldrum, P.I., Rapid inversion of data from 2-D resistivity surveys with electrodes displacements, Geophysical Prospecting, 2018, vol. 66, no. 3. pp. 579–594, DOI: 10.1111/1365-2478.12522

Mirgalikyzy, T., Mukanova, B., Modin I., Method of integral equations for the problem of electrical tomography in a medium with ground surface relief, Journal of Applied Mathematics, 2015, vol. 2015, art. ID 207021, pp. 1–10, DOI: 10.1155/2015/207021

Pryor, R., Multiphysics modeling using COMSOL, Jones and Bartlett Publishers, 2011.

Robain, H., Bobachev, A., X2IPI. Tool box for 2D DC measurements with SYSCAL equipment. User manual, Official website of the x2ipi program, 2017, URL: http://media.voog.com/0000/ 0038/0901/files/X2IPI_manual.pdf

Svetov, B.S., Osnovy geoelektriki (Fundamentals of Geoelectrics), Moscow: LKI, 2008.

Vishnyakov, S.V., Gordyukhina, M.N., Fedorova, E.M., Raschet elektromagnitnykh polei s pomoshch'yu programmnogo kompleksa ANSYS (Calculation of electromagnetic fields using ANSYS software), Moscow: MPEI, 2003.

Zhdanov, M.S., Elektrorazvedka (Electrical prospecting), Moscow: Nedra, 1986.

Zhostkov, R.A., Improving certain means of seismic exploration by using data on Rayleigh wave scattering on relief, Bulletin of the Russian Academy of Sciences: Physics, 2018, vol. 82, no. 11, pp. 1416–1420.


About the authors


KAZNACHEEV Pavel Aleksandrovich – PhD (Candidate of Science in Technics), Senior Staff Scientist, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Ph.: +7(499) 254-23-40. E-mail: p_a_k@mail.ru


POPOV Igor Yurievich – student, Lomonosov Moscow State University. 119991, Moscow, Leninskie gory str. 1. Ph.: +7(495) 939-49-63. E-mail: igo3427@yandex.ru


MODIN Igor Nikolaevich – Dr. Sci. (Tech. Science), Professor, Lomonosov Moscow State University. 119991, Moscow, Leninskie gory str. 1. Ph.: +7(495) 939-49-63. E-mail: imodin@yandex.ru


ZHOSTKOV Ruslan Aleksandrovich – PhD (Candidate of Phys.-Math. Science), Senior Staff Scientist, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Ph.: +7(499) 254-90-80. E-mail: shageraxcom@yandex.ru