METADATA IN ENGLISH

About the journal

NAUKA I TEKHNOLOGICHESKIE RAZRABOTKI (SCIENCE AND TECHNOLOGICAL

DEVELOPMENTS), ISSN: 2079-5165, eISSN: 2410-7948, DOI: 10.21455/std; https://elibrary.ru/title_

about.asp?id=32295; http://std.ifz.ru/. The journal was founded in 1992.

EXPERIMENTAL STUDY OF ACCEPTABLE DISTANCE
OF LABORATORY AIRCRAFT FROM THE BASE STATION
IN AIRBORNE GRAVITY SURVEY

V.V. Pogorelov, V.N. Solovyev, V.N. Koneshov, P.S. Mikhailov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow, Russia 

Corresponding author: V.V. Pogorelov, e-mail: vvp@ifz.ru

Highlights

– Positioning features of the aircraft laboratory for gravimetric surveys are considered

– Airborne gravimetric measurements on transcontinental profiles are described

– Estimates of using base stations during aerogravimetric surveys are given

– Effect of baseline lengths on positioning accuracy of aircraft laboratory was analyzed

– Optimal navigation solutions tailoring for airborne gravity surveys planning

Abstract. The paper studies the features of the navigation support of the aircraft laboratory as applied to the performance of airborne gravimetric measurements. The main purpose of gravimetric measurements from air carriers is to study the gravitational field in remote regions of the planet and, therefore, one of the key parameters is the autonomy of the aircraft. Currently, to provide airborne gravity survey with navigation data, a ground reference base station system is being created. At the same time, the pertinent issue remains the allowable distance from the aircraft laboratory as well as the optimal configuration of their relative position. According to materials obtained by employees of the Schmidt Institute of Physics of the Earth RAS at transcontinental flights, the calculation of the permissible length of baselines for navigation definitions of the required accuracy. A procedure for performing measurements on extended profiles, their subsequent processing, as well as a statistical evaluation of the results obtained are described.

Keywords: gravimetry, airborne gravimetry, gravity survey, Earth gravity field, airborne gravimetric complex, gravimeter, base line, base station, extended profiles

Cite this article as: Pogorelov V.V., Solovyev V.N., Koneshov V.N., Mikhailov P.S. Experimental study of acceptable distance of laboratory aircraft from the base station in airborne gravity survey // Nauka i Tekhnologicheskie razrabotki (Science and Technological Developments). 2018. vol. 97, no. 4. pp. 41–75. [Technologies of Studying the Earth Gravitational Field and Improving the Accuracy of Coordinate Support in Geophysical Research]. DOI: 10.21455/std2018.4-3

References

Alpatov V.V., Budnikov P.A., Vasiliev A.E., Denisova V.I., Kunitsin V.E., Lapshin V.B., Molodtsov D.A., Tasenko S.V., Repin A.Yu. ROSHYDROMET radiotomography network: principals of development, results of operation, outlooks, Radio propagation (RRV-24): Conference proceedings. Irkutsk, 2014. P.46–53.

Antonovich K.M. The use of satellite radio navigation systems in geodesy (Monograph in 2 vol.). Moscow: FGUP “Cardgeocenter”, 2005. 334 p. [in Russian].

Bermishev A., Krivospitsky L., Lapshin V., Revnivykh S. Experimental research on GLONASS/GPS combined receivers operation along the northern sea route in August-Semtember 2011, Novosti Navigatsii (Navigation News), 2012. No. 3. P.5–15. [in Russian].

Bolkunov A.I., Serdyukov A.I. Methods for assessing the effectiveness of global navigation satellite systems, Vestnik Moskovskogo Aviatsionnogo Instituta (AEROSPACE MAI JOURNAL), 2011. Vol. 18, No. 6. P.78–89. [in Russian].

Bolotin Yu.V., Golovan A.A. Software for tasks of express diagnostics of gravimetric data. Version 1.01.05S-2 / User's manual. Moscow, MSU, 2005. 77 p. [in Russian].

Bolotin Yu.V., Golovan A.A., Parusnikov N.A. Features of cameral processing in the problem of airborne gravimetry, Razvedka i okhrana nedr (Prospect and Protection of Mineral Resources), 2006. No. 5. P.35–38. [in Russian].

Brozena J.M., Salman R. Arctic airborne gravity measurement program, Gravity, Geoid and Marine Geodesy, 1996. Springer Verlag. IAG Series 117. P.131–139.

Burton A.M. Improving the Accuracy and Resolution of SINS/DGPS Airborne Gravimetry. PhD-thesis. University of Calgary, Alberta, Canada, 2000. 235 p.

Dossing A., Hopper J.R., Olesen A.V., Rasmussen T.M., and Halpenny J. New aero-gravity results from the Arctic Ocean: Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean, Geochem. Geophys. Geosyst., 2013. No. 14. P.4044–4065. DOI: 10.1002/ggge.20253

Drobyshev N.V., Koneshov V.N., Koneshov I.V., Solovjev V.N. Airborne Laboratory and Methodic of Aerogravimetric Survey in Arctic Conditions, Vestnik Permskogo universiteta. Geologiya (Bulletin of Perm University. Geology), 2011. No. 3. P.37–50. [in Russian].

Drobyshev N.V., Koneshov V.N., Pogorelov V.V., Solovyev V.N., Rozhkov Yu.E. Specific features of the technique of airborne gravity surveys at high latitudes, Izvestiya. Physics of the Solid Earth, 2009. Vol. 45, No. 8. P.656–660.

Drobyshev N.V., Koneshov V.N., Pogorelov V.V., Mikhailov P.S. Airborne laboratory for gravity field research, Nauka i Tekhnologicheskie razrabotki (Science and Technological Delopements), 2018. Vol. 97, No. 4. P.5–27. DOI: 10.21455/std2018.4-1

Featherstone W.E. Satellite and airborne gravimetry – their role in geoid determination and some suggestions / Airborne Gravity, Lane R. (ed.). Australia, Geosciense Australia. 2010. P.58–70.

Forsberg R., Brozena J.M. The Greenland Airborne Gravity Project – comparison of airborne and terrestrial gravity data. In: Montag H., Reigber C. (eds), Geodesy and Physics of the Earth. International Association of Geodesy Symposia, vol 112. Springer, Berlin, Heidelberg Springer Verlag, 1993, no. 112, P.171–175.

Forsberg R., Olesen A.V., Keller K., Møller M. Airborne Gravity Survey of Sea Areas Around Greenland and Svalbard 1999–2001, National Survey and Cadastre – Denmark Technical report no. 18, Kort & Matrikelstyrelsen. ISBN 87-7866-368-7. 2003. 57 p.

Forsberg R., Olesen A.V., Yildiz H., Tscherning C.C. Polar Gravity Fields from GOCE and airborne Gravity // Proc. of 4th International GOCE User Workshop. 2011. ESA SP–696.

Garin E.N., Kopylov V.A., Ratushniak V.N., Lyutikov I.V. The Modern Development of GNSS GLONASS and GPS, Zhurnal Sibirskogo Federalnogo Universiteta (Journal of Siberian Federal University. Engineering & Technologies), 2018. Vol. 11, No. 3. P.313–317. [in Russian].

GKINP (GNTA) -01-006-03 Geodetic, cartographic instructions, norms and rules. Basic provisions on the state geodetic network of the Russian Federation. Moscow, TsNIIGAiK, 2004. 28 p. [in Russian].

Golovan A.A., Klevtsov V.V., Koneshov I.V., Smoller Y.L., Yurist S.S. Application of GT-2A Gravimetric Complex in the Problems of Airborne Gravimetry, Izvestiya. Physics of the Solid Earth, 2018. Vol. 54, No. 4. P.658–664. DOI: 10.1134/S000233371804004X

Gorobets V.P., Yefimov G.N., Stolyarov I.A. Experience of Russian Federation in establishment of national coordinate system 2011, Vestnik SGUGiT (Herald of the Siberian State University of Geosystems and Technologies (SSUGT)), 2015. Iss. 2 (30). P.24–37. [in Russian].

Koneshov V.N., Nepoklonov V.B., Stolyarov I.A. Study of the anomalous gravity field in the arctic based on modern geopotential models, Izvestiya. Physics of the Solid Earth, 2012. Vol. 48, No. 7. P.587–593.

Koneshov V.N., Abramov D.V., Drobyshev N.V., Klevtsov V.V., Kuznetsova N.V., Lavrentyeva E.Yu., Makushin A.V., Pogorelov V.V., Solovyev V.N. Airborne gravity study IFZ RAS over the waters of the Eastern coast of Kamchatka in autumn 2013, Vestnik Kamchatskoi regional'noi organizatsii Uchebno-nauchnyi tsentr. Seriya: Nauki o Zemle (Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences), 2013. No. 2, Iss. 22. P.232–237. [in Russian].

Koneshov V.N., Solovyev V.N., Pogorelov V.V., Abramov D.V., Makushin A.V., Drobyshev N.V., Klevtsov V.V. Aerogravity survey of the offshore Kamchatka area of the Pacific ocean, Geofizicheskie issledovaniya (Geophysical Research), 2014a. Vol. 15, No. 3. P.5–12. [in Russian].

Koneshov V.N., Nepoklonov V.B., Solovyev V.N. Comparison of the global models for the terrestrial gravitational field anomaly with the aerogravimetric measurements during the transcontinental flight, Giroskopiya i navigatsiya (Gyroscopy and Navigation), 2014b. No. 2 (35). P.86–94. [in Russian].

Koneshov V.N., Abramov D.V., Drobyshev N.V., Kuznetsova N.V., Makushin A.V., Solovyev V.N. The study of the gravitational field of the Earth during the expedition work of the IFZ RAS in Kamchatka in 2014, Vestnik Kamchatskoi regional'noi organizatsii Uchebno-nauchnyi tsentr. Seriya: Nauki o Zemle (Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences), 2014c. No. 2, Iss. 24. P.204–210. [in Russian].

Koneshov V.N., Klevtsov V.V., Solovyev V.N. Upgrading the GT-2A aerogravimetric complex for airborne gravity measurements in the Arctic, Izvestiya. Physics of the Solid Earth, 2016a. Vol. 52, No. 3. P.452–459.

Koneshov V.N., Nepoklonov V.B., Pogorelov V.V., Solovyev V.N., Afanas’eva L.V. Arctic gravity exploration: state of the art and prospects, Izvestiya. Physics of the Solid Earth, 2016b. Vol. 52, No. 3. P.443–451.

Koneshov V.N., Solovyev V.N., Pogorelov V.V., Nepoklonov V.B., Afanasyeva L.V., Drobyshev M.N. Airborne gravity survey for estimation of regional uncertainties in gravity anomalies derived from modern Earth gravitational models, Geofizicheskie issledovaniya (Geophysical Research), 2016c. Vol. 17, No. 3. P.5–16. [in Russian].

Mazurova E.M., Antonovich K.M., Lagutina EK, Lipatnikov L.A. Analysis of the state of the State Geodetic Network of Russia, taking into account the existing and future requirements, Vestnik SGUGiT (Herald of the Siberian State University of Geosystems and Technologies (SSUGT)), 2014. Vol. 3 (27). P.84–89. [in Russian].

Modern methods and tools for measuring the parameters of the gravitational field of the Earth (Collective monograph). SPb., GNC RF Concern Central Research Institute Elektropribor, 2017. Chapter 4. Features of the study of the gravitational field in remote areas, P.179–209. [in Russian].

Mogilevskiy V.Е., Brovkin G.I., Kontarovich O.R. Achievements, features and problems of aerogravitation measurements, Razvedka i okhrana nedr (Prospect and Protection of Mineral Resources), 2015. No. 12. P.6–25. [in Russian].

Mogilevskiy V.Е., Pavlov S.А. High precision airborne gravity survey on the shelf, Official website of AO «GNPP Aerogeofizika», 2009. Link: http://aerogeo.ru/index.php?option= com_content&view=article&id= 76%3A2009-10-15-13-37-44&catid=18%3A2009-06-23-04-49-37&Itemid=21&lang=ru [in Russian].

Poselov V.A., Avetisov G.P., Andreeva I.A., Astafurova E.G., Basov V.A., Batova G.I., Butsenko V.V., Verba V.V., Glebov V.B., Glebovsky V.Yu., Glinskaya N.V., Daragan O.I., Zholondz S.M., Zinchenko A.G., Ivanov V.N., Kabankov V.Ya., Kaminsky V.D., Korotkova T.A., Kupriyanova N.V., Kursheva A.V., Litvinenko I.V., Palamarchuk V.K., Petrova V.I., Piskarev A.L., Razuvaeva E.I., Rekant P.V., Firsov Yu.G., Chernykh A.A. Russian arctic geotraverse. In: Proceedings of NIIGA-VNIIOkeangeologiya, vol. 220, pp. 21–25. SPb., FGUP “VNIIOkeangeologia them. I.S. Gramberga”, 2011. 172 p. [in Russian].

Steblov G.M. Interaction of tectonic plates in northeast Asia, Reports of the Academy of Sciences, 2004. Vol. 394, No. 5. P.689–692.

Tsymbal I.V., Pavlikov S.N. Differential modes of satellite navigation systems at sea, Vestnik Morskogo Gosudarstvennogo Universiteta (Bulletin of Maritime State University), 2011. No. 45, P.110–118. [in Russian].

Tuchin D.A. Code measurements of the GPS pseudorange. Error model and a priori estimate of the accuracy of determining the position vector, Preprint No. 30. M., IPM im. M.V. Keldysha RAS, 2002. [in Russian].

Yaltykhov V.V., Markovich K.I. To the question of using of various models of calibrations GPS-antennas, types of domes, masks on the angle of elevation at processing GNNS-measurements, Zhurnal Sibirskogo Federalnogo Universiteta (Journal of Siberian Federal University. Engineering & Technologies), 2016. No. 4 (36). P.40–51. [in Russian].

Zheleznyak L.K., Mikhailov P.S., Soloviev V.N. Marine gravity measurements without referencing to the coastal base stations, Izvestiya. Physics of the Solid Earth, 2014. Vol. 50, No. 2. P.212–214. DOI: 10.7868/S0002333714020148

About the authors

POGORELOV Vitaly Viktorovich – Candidate of Physical and Mathematical Sciences, Scientific Secretary, Schmidt Institute of Physics of the Earth RAS, 123241, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: +7(499) 766-26-55. E-mail: vvp@ifz.ru

SOLOVYEV Vladimir Nikolevich – Senior researcher, Schmidt Institute of Physics of the Earth RAS, 123241, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: +7(499) 254-23-35. E-mail: solovyev@ifz.ru

KONESHOV Vyacheslav Nikolaevich – Doctor of Technical Sciences, Deputy Director, Schmidt Institute of Physics of the Earth RAS, 123241, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: +7(499) 254-23-35. E-mail: slavakoneshov@hotmail.com

MIKHAILOV Pavel Sergeevich – Candidate of Technical Sciences, Senior researcher, Schmidt Institute of Physics of the Earth RAS, 123241, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: +7(499) 254-23-35. E-mail: paulmikh@mail.ru