METADATA IN ENGLISH

 

About the journal

 

NAUKA I TEKHNOLOGICHESKIE RAZRABOTKI (SCIENCE AND TECHNOLOGICAL DEVELOPMENTS), ISSN: 2079-5165, eISSN: 2410-7948, DOI: 10.21455/std; https://elibrary.ru/title_about.asp?id=32295; http://std.ifz.ru/. The journal was founded in 1992.

 

 

 

ATLANTIDA3.1_2014, A SOFTWARE FOR EARTH TIDE
PREDICTION: NEW VERSION

 

© 2017 Е.А. Spiridonov1, V.D. Yushkin2,3, О.Yu. Vinogradova1, L.V. Afanasyeva1

1Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

2Lomonosov Moscow State University, Moscow, Russia

3Center of Geodesy, Cartography and SDI (ex. TsNIIGAiK), Moscow, Russia

Corresponding author: E.A. Spiridonov, e_mail: sp287@mail.ru

 

Highlights

 

Functionality and short user guide of the ATLANTIDA3.1_2014 program are given

Theoretical foundations underlying in the development of the program are discussed

Differences of the current version of the program from the previous one are shown

Amplitude factors for the Earth without the ocean are compared with other works

Degree of coincidence of the calculations with the observational data is estimated

 

Abstract. First of all, in the paper some of the distinctive features of the first domestic program for Earth tides prediction ATLANTIDA3.1._2014 in comparison with similar programs of foreign authors are discussed, as well as some examples of practical application of the program by some researchers are given. Further, the main functionality of the program is listed. Among them, the possibilities for calculating the amplitude delta factors of tidal waves for the Earth without the ocean, as well as amplitude delta factors and phase shifts for the Earth with the ocean, time series of the tide, amplitudes and phases of the oceanic gravimetric effect are highlighted. A brief description of the theoretical developments included in the program is given. In this regard, the main differences of the latest version of the program are highlighted. The theoretical values of the amplitude delta factors for an inelastic self-gravitating rotating Earth, calculated taking into account the action of relative and Coriolis accelerations, as well as dissipation, are considered in detail. In total, 12 variants of models are considered, differing from each other by the turning on or turning 0ff of separate factors affecting the result. Evaluation of proximity of the results of the program and observations made on European superconducting gravimeters of the Global Geodynamic Project (GGP) is given. It is shown that by this criterion our program surpasses the most well-known analogs in the world practice. In the conclusion of the paper, a list of tasks is given, the solution of which will further expand the functionality of the program and lead to refinement of the results already obtained so far.

Keywords: Earth tides forecast program ATLANTIDA3.1_2014, tidal amplitude delta factors, tidal time series, oceanic loading effect, Earth tidal theory, global positioning systems (GNSS)

Cite this article as: Spiridonov Е.А., Yushkin V.D., Vinogradova О.Yu., Afanasyeva L.V. ATLANTIDA3.1_2014, a software for Earth tide prediction: new version, Nauka i Tekhnologicheskie Razrabotki (Science and Technological Developments). 2017. Vol. 96. No. 4. pp. 19–36. [Special issue “Applied Geophysics: New Developments and Results. Part. 2. Navigation and Space Research”]. [in Russian]. DOI: 10.21455/std2017.4-2

 

References

 

Agnew D.C. SPOTL: Some programs for ocean-tide loading, SIO Ref. Ser. 98-8, Scripps Inst. of Oceanogr., La Jolla, Calif., 1996. 35 p.

Agnew D.C. NLOADF: A program for computing ocean-tide loading, J. Geophys. Res., 1997, Vol. 102 pp. 5109–5110.

Dehant V. Tidal parameters for an inelastic Earth, Physics of the Earth and Planetary Interiors, 1987, Vol. 49, pp. 97–116.

Dehant V., Defraigne P., Wahr J.M. Tides for a convective Earth, J. Geophys. Res., 1999, Vol. 104, No. B1, pp. 1035–1058.

Francis O., Mazzega P. Global charts of ocean tide loading effects, J. Geophys. Res., 1990, Vol. 95, pp. 11411–11424.

Koneshov V.N., Zheleznyak L.K., Soloviev V.N., Mikhailov P.S. Development of innovative methodological support for marine gravimetric surveys, Nauka i Tekhnologicheskie Razrabotki (Science and Technological Developments), 2017, Vol. 96, No. 4, pp. 3–18. [Special issue “Applied Geophysics: New Developments and Results. Part. 2. Navigation and Space Research”]. [in Russian]. DOI: 10.21455/std2017.4-1

Mäkinen J., Sermyagin R.A., Oshchepkov I.A., Basmanov A.V., Pozdnyakov A.V., Yushkin V.D., Stus Yu.F., and Nosov D.A. RFCAG2013: Russian-Finnish comparison of absolute gravimeters in 2013, J. Geod. Sci., 2016, Vol. 6, pp. 103–110. DOI 10.1515/jogs-2016-0008 DOI: https://doi.org/10.1515/jogs-2016-0008

Mathews P.M. Love numbers and gravimetric factor for diurnal tides. Proc. 14thInt. Symp. Earth Tides, J. Geod. Soc., 2001, Vol. 47, No. 1, pp. 231–236.

Matsumoto K., Sato T., Taanezawa T., and Ooe M. GOTIC2: A program for computation of oceanic tidal loading effect, J. Geod. Soc., 2001, Vol. 47, pp. 243–248.

McCarthy D.D. IERS conventions, IERS Techn. Note 21. Paris: Int. Earth Rotation Serv. 95 p.

Mikhailov P.C. Perfection of Methodical Methods for Performing Marine Gravimetric Surveys, Thesis Cand. Tech. Sciences. Moscow, IPE RAS, 2017, 115 p. [in Russian].

Molodensky M.S. Elastic tides, free nutation and some problemss of the Earth’s structure, Proceedings of the Geophysical Institute of the Academy of Sciences of the USSR, 1953, No. 19 (146), pp. 3–52. [in Russian].

Molodensky M.S., Kramer M.V. Love numbers for static Earth tides of the second and third orders, Earth tides and nutation of the Earth, Moscow, Izdatelstvo AN SSSR, 1961, p. 26. [in Russian].

Molodensky S.M. Tides, Nutation and Internal Structure of the Earth. Moscow, IPE, Academy of Sciences of the USSR, 1984, 215 p. [in Russian].

Oshchepkov I.A., Sermyagin R.A., Spesivtsev A.A., Yushkin V.D., Pozdnyakov A.V., Kovrov A.A., Yuzefovich P.A. Gravity Measurements in the Moscow Gravity Network, July 28, 2016.
DOI: 10.5281/zenodo.59096. (https://zenodo.org/record/59096#.WYBy0lFLfIU). [in Russian].

Pertsev B.P. On the influence of sea tides on tidal variations in gravity, Izvestiya AN SSSR. Physics of the Earth, 1966, No. 10, pp. 25–29. [in Russian].

Pertsev B.P. Estimation of the influence of the sea tides on the terrestrial at points remote from the oceans, Earth Tides and the Internal Structure of the Earth. Moscow, Nauka, 1967, pp. 10–22. [in Russian].

Pertsev B.P. Influence of marine tides of near zones on terrestrial observations, Izvestiya AN SSSR. Physics of the Earth, 1976, No. 1, pp. 13–22. [in Russian].

Pertsev B.P. Tidal corrections to gravity measurements, Izvestiya, Physics of the Solid Earth, 2007, Vol. 43, No. 7, pp. 547–553. [in Russian]. DOI: 10.1134/S1069351307070038

Pertsev B.P., Ivanova M.V. Calculation of Love’s load numbers for the Earth model 508 of Hilbert and Dzievonski, Studying the Earth’s tides, Moscow, Nauka, 1980, pp. 42–47. [in Russian].

Pertsev B.P., Ivanova M.V. Evaluation of the effect of surf water on the values gravity and the height of the Earth’s surface in coastal regions, Izvestiya AN SSSR, Physics of the Earth, 1981, No. 1, pp. 87–91. [in Russian].

Pertsev B.P., Ivanova M.V. Estimation of the accuracy of calculation of tidal corrections, Izvestiya RAS. Physics of the Earth, 1994, No. 5, pp. 78–80. [in Russian].

Scherneck H.G. A parameterized Earth tide observation model and ocean tide loading effects for precise geodetic measurements, Geophys. J. Int., 1991, Vol. 106, pp. 677–695.

Smith M.L. The scalar equations of infinitesimal elastic gravitational motion for a rotating, slightly elliptical Earth, Geophys. J. R. Astron. Soc., 1974, Vol. 37, pp. 491–526.

Smith M.L. Translational inner core oscillations of a rotating, slightly elliptical Earth, J. Geophys. Res., 1976, Vol. 81, pp. 3055–3065.

Smith M.L. Wobble and nutation of the Earth, Geophys, J. R. Astron. Soc., 1977, Vol. 50, pp. 103–140.

Spiridonov E.A., ATLANTIDA3.1-2014 software for analysis of Earth tides data, Nauka i Tekhnologicheskie Razrabotki (Science and Technologikal Developments), 2014, Vol. 93, No. 3, pp. 3–48. [in Russian].

Spiridonov E.A. The Program for Calculating the Earth Tides ATLANTIDA3.1_2014, Certificate of State Registration of Computer Programs No. 2015619567 dated September 8, 2015, 2015c. [in Russian].

Spiridonov E.A. Corrections to the Love numbers for the relative and Coriolis accelerations and their latitude dependence, Geofizicheskie Protsessy i Biosfera (Geophysical Processes and Biosphere), 2016, Vol. 15, No. 1, pp. 73–80. [in Russian].

Spiridonov E.A. Results of comparison of predicted earth tidal parameters and observational data, Seismic Instruments, 2016, Vol. 52, No. 1, pp. 60–69. DOI: https://doi.org/10.3103/S0747923916010084

Spiridonov E.A. How dissipation and selection of the Earth model influence on the quality of the Earth tidal prediction, Seismic Instruments, 2016, Vol. 52, No. 3, pp. 224–232 DOI: https://doi.org/10.3103/S0747923916030075

Spiridonov E.A. Latitude dependence of amplitude factor δ for degree 2 tides, Russian Geology and Geophysics, 2016, Vol. 57, No. 4, pp. 629–636. DOI: 10.1016/j.rgg.2015.08.013

Spiridonov E.A. Tidal amplitude delta-factors and phase shifts for Earth with ocean, Geofizicheskie Protsessy i Biosfera (Geophysical Processes and Biosphere). 2017, Vol. 16, No. 2, pp. 5–54. [in Russian]. DOI: 10.21455/GPB2017.2-1 [Engl. Transl.: Izvestiya, Atmospheric and Oceanic Physics, 2017, Vol. 53, Issue 8].

Spirdonov E.A., Vinogradova O.Yu. Comparison of the model oceanic gravimetrical effect with the observations, Izvestiya, Physics of the Solid Earth, 2014, Vol. 50, No. 1, pp. 118–126.
DOI:
10.1134/S1069351314010078

Spirdonov E.A., Vinogradova O.Yu. The results of integrated modeling the oceanic gravimetric effect, Seismicheskie Pribory. 2017, Vol. 53, No. 1, pp. 66–80. DOI: 10.21455/si2017.1-5 [in Russian]. [Engl. Transl.: Seismic Instruments, 2018, Vol. 54, Issue 1].

Spiridonov E.A., Jushkin V.D., Khrapenko O.A. Tidal analysis and experimental oceanic loading effect in the city of Murmansk, Geodesy and Cartography, 2014, No. 12, pp. 22–29. [in Russian].

Spiridonov E., Vinogradova O., Boyarskiy E., Afanasyeva L. ATLANTIDA3.1_2014 for WINDOWS: A software for tidal prediction, Bull. Inf. Marées Terrestres, 2015, No. 149, pp. 12063–12081.

Valencio A., Grebogi C., and Baptista M.S. Removing tides from gravity time-series: a comparison of classical methods applied to a global network of superconducting gravimeters. 28 February 2017, (ArXiv:1702.08363 [physics.geo-ph]).

Van Camp M. and Vanterin P. T-soft: graphical and interactive software for the analysis of the time series and Earth tides, Computers and Geosciences, 2005, Vol. 31, pp. 631–640.

Vinogradova O.Y. Oceanic tidal loads near the European coast calculated from Green’s functions, Izvestiya, Physics of the Solid Earth, 2012, Vol. 48, No. 7, pp. 572–586. DOI: 10.1134/S1069351312070099

Vinogradova O.Y., Spiridonov E.A. Comparative analysis of oceanic corrections to gravity calculated from the PREM and IASP91 models, Izvestiya, Physics of the Solid Earth, 2012, Vol. 48, No. 2. pp. 162–170. DOI: 10.1134/S1069351312010132

Vinogradova O. Yu., Spiridonov E.A. Some Features of TOPEX/POSEIDON Data. Application in Gravimetry, Altamimi Z. and Collilieux X. (eds.) Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia 138, Berlin, Heidelberg: Springer-Verlag, 2013, рр. 229–235. DOI: 10.1007/978-3-642-32998-2_35

Vinogradova O.Y., Spiridonov E.A. Comparison of two methods for calculating tidal loads, Izvestiya, Physics of the Solid Earth, 2013, Vol. 49. No. 1, pp. 83–92. DOI: 10.1134/S1069351313010163

Wahr J.M. The Tidal Motions of a Rotating, Elliptical, Elastic and Oceanless Earth, Ph.D. thesis, Univ. of Color., Boulder, 1979, 216 p.

Wahr J.M. Body tides on an elliptical, rotating, elastic and oceanless Earth, Geophys. J. R. Astron. Soc., 1981a, Vol. 64. pp. 677–703.

Wahr J.M. A normal mode expansion for the forced response of a rotating Earth, Geophys. J. Roy. Astron. Soc., 1981b, Vol. 64, pp. 651–675.

Wahr J.M., and Bergen Z. The effects of mantle and anelasticity on nutations, earth tides, and tidal variations in rotation rate, Geophys. J., 1986, Vol. 87, pp. 633–668.

Wenzel H.G. The Nanogal Software: Earth Tide Data Processing Package Eterna3.30, Bull. D’Inf. Maree Terr., 1996, Vol. 124, pp. 9425–9439.

Zheleznyak L.K., Koneshov V.N., Mikhailov P.S. Experimental determination of the vertical gravity gradient below the sea level, Izvestiya, Physics of the Solid Earth, 2016, Vol. 52, No. 6, pp. 866–868. DOI: 10.1134/S1069351316060124

 

About the authors

 

SPIRIDONOV Evgeny Alexandrovich  Candidate of Physical and Mathematical Sciences, Leading Researcher, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: (915) 141-78-76.
E-mail: sp287@mail.ru

 

YUSHKIN Viktor Dmitrievich — Research Associate, Lomonosov Moscow State University. 119991, Moscow, Leninskie gory,1; Center for Geodesy, Cartography and IPD, Moscow, Russia. 109316, Moscow, Volgogradsky prospect, 45, stroenie 1. E-mail: yusvic@yandex.ru

 

VINOGRADOVA Olga Yuryevna — Research Associate Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. E-mail: sp295@mail.ru

 

AFANASYEVA Larisa Vitalievna — Senior Researcher, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1.