About the journal


NAUKA I TEKHNOLOGICHESKIE RAZRABOTKI (SCIENCE AND TECHNOLOGICAL DEVELOPMENTS), ISSN: 2079-5165, eISSN: 2410-7948, DOI: 10.21455/std;; The journal was founded in 1992.





© 2017 A.L. Sobisevich1, D.A. Presnov1, R.A. Zhostkov1, L.E. Sobisevich1,
A.S. Shurup1,2, D.V. Likhodeev1, V.M. Agafonov3

1Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow, Russia

2Lomonosov Moscow State University, Moscow, Russia

3Moscow Institute of Physics and Technology, Moscow region, Dolgoprudny, Russia

Corresponding author: R.A. Zhostkov, e-mail:




Mathematical model of “bottom–water–ice” structure for ice-covered seas is created

An ice geohdroacoustic buoy is designed and tested in full-scale conditions

Experimental data are consistent with theoretical estimates for the model created

Sea noise carries information about the structure of seabed and water layer

Passive technology of searching for inhomogeneities in water and bottom is created


Abstract. The results of theoretical and experimental studies of the structure of wave geohydroacoustic fields formed in the northern seas covered with continuous ice are presented. A simplified mathematical model is constructed that takes into account experimental data showing that the water layer with the ice cover exerts the greatest influence on the generation process of various types of geohydroacoustic waves in the lithosphere-hydrosphere-ice cover system. The structure of the seabed affects mainly the characteristics of propagating waves, and not the generation of new modes. The results of mathematical modeling became the basis for the development of new localization technologies for inhomogeneities, applicable in ice-covered water areas. The main distinguishing feature of the newly developed technology for monitoring the environment in ice-covered sea conditions is the possibility of measuring the parameters of noise signals without the use of active sources of geohydroacoustic radiation. The most promising for use in the conditions of the northern seas are methods based on measuring the characteristics of surface waves, in particular methods of microseismic sounding and noise tomography. The combination of these methods combines the achievements of passive geophysics in recent years and takes into account the features of hydroacoustics. To obtain information about the wave propagation medium, both the amplitude and phase characteristics of the wave field are used. To reveal in the records the waves of one type or another, methods of spatio-temporal processing of the signal with an appropriate choice of the frequency range are used. A new generation of seismo-hydroacoustic freezing information-measuring modules (buoys) created by the authors, equipped with vector and molecular-electronic primary converters, is described. The information-measuring modules are intended for use in the distributed ice-class antenna systems, the use of which will allow conducting year-round monitoring of the northern seas covered with solid ice sheet. Investigations into the functioning of the ice freezing information and measuring systems and the theoretical results obtained were checked during fieldwork in February 2017. At each measuring station, the receiving system consisted of three reference devices providing measurements at the bottom, in the water column and on the ice surface. The mockups of the tested geohydroacoustic buoys were frozen at points separated by a distance of one kilometer. As emitters, we used falling mass of 32 kg. The use of a controlled perturbation during ice experiments made it possible to obtain qualitative spectrograms of geohydroacoustic perturbations in layered structures and to analyze dispersion curves. In the study of the fundamental bottom mode, a underwater blast at a depth of 10 m was used as the source of the signal. Seismic-hydroacoustic freezing information-measuring modules successfully withstood the ice tests in full-scale conditions at low temperatures, demonstrating the stability of the acquired seismo-hydroacoustic information. The experimental data obtained are in a good agreement with the theoretical estimates made within the framework of the model of layered geological environment. The set of the performed studies showed that the natural noise of the sea contains useful information that reflects the internal structure of the seabed and the water layer and allowed developing instrumental and methodological foundations for the noise technology of localization of inhomogeneities in the aquatic environment and layered bottom structures of the northern seas by passive monitoring of microseismic noise.

Keywords: monitoring of layered media, under-ice waters areas, seabed, geohydroacoustic fields, passive monitoring, mathematical modeling, dispersion of surface waves, information-measuring modules, geohydroacoustic antenna systems, full-scale experiments.

Cite this article as: Sobisevich A.L., Presnov D.A., Zhostkov R.A., Sobisevich L.E., Shurup A.S., Likhodeev D.V., Agafonov V.M. Geohydroacoustic noise monitoring of the under-ice waters of the northern seas, Nauka i Tekhnologicheskie Razrabotki (Science and Technological Developments). 2017, Vol. 96, No. 3, pp. 3–18. [Special issue “Applied Geophysics: New Developments and Results. Part. 1. Seismology and Seismic Exploration”]. [in Russian]. DOI: 10.21455/std2017.3-1




Agafonov V.M., Egorov I.V., Shabalina A.S. Operating principles and technical characteristics of a small-sized molecular-electronic seismic sensor with negative feedback, Seismic Instruments, 2014, Vol. 50, No. 1, pp. 1–8. DOI:

Asming V.E., Baranov S.V., Vinogradov Yu.A., Voronin  A.I. Seismic and infrasonic monitoring on the Spitsbergen archipelago, Seismic Instruments, 2013, Vol. 49, No. 3, pp. 209–218. DOI:

Asming V.E., Baranov S.V., Vinogradov A.N., Vinogradov Yu.A., Fedorov A.V. Using an infrasonic method to monitor the destruction of glaciers in arctic conditions, Acoustical Physics, 2016, Vol. 62, No. 5, pp. 583–592. DOI:

Bashilov I.P., Zubko Yu.N., Levchenko D.G., Ledenev V.V., Pavliukova E.R., Paramonov A.A. Bottom geophysical observatories: methods of designing and area of application, Nauchnoye priborostroyeniye (Scientific Instrument Making), 2008, Vol. 18, No. 2, pp. 86–97. [in Russian].

Bashilov I.P., Volosov S.G., Merkulov V.A., Rybakov N.P., Sukonkin S.Ya., Chervinchuk S.Yu. Field test results of mockups of ZDSS-M and MDM digital bottom seismic stations for security systems, Nauka i Tekhnologicheskie Razrabotki (Science and Technological Developments), 2017, Vol. 96, No. 3, pp. 19–32. [Special issue “Applied Geophysics: New Developments and Results. Part. 1. Seismology and Seismic Exploration”]. [in Russian]. DOI: 10.21455/std2017.3-2

Brown M.G., Godin O.A., Williams N.J., Zabotin N.A., Zabotina L.Y., Banker G.J. Acoustic Green’s function extraction from ambient noise in a coastal ocean environment, Geophys. Res. Lett., 2014, Vol. 41, No. 15, pp. 5555–5562. DOI: 10.1002/2014GL060926

Burov V.A., Sergeev S.N., Shurup A.S. The use of low-frequency noise in passive tomography of the ocean, Acoustical Physics. 2008, Vol. 54, No. 1, pp. 42–51. DOI: 10.1134/S1063771008010077

Burov V.A., Mukhanov P.Y., Sergeev S.N., Shurup A.S., Grinyuk A.V., Kravchenko V.N. Selection of modes from a shallow-water noise field by single bottom hydrophones for passive tomography purposes, Acoustical Physics, 2014, Vol. 60. No. 6, pp. 647–656. DOI: 10.1134/S1063771014060049

Fedorov A.V., Asming V.E. Monitoring of Spitsbergen glaciers activity by seismic method, Nauka i Tekhnologicheskie Razrabotki (Science and Technological Developments), 2015, Vol. 94, No. 4, pp. 44–52. [in Russian]. URL:

Gibbons S.J., Asming V., Fedorov A., Fyen J., Kero J., Kozlovskaya E., Kværna T., Liszka L., Näsholm S.P., Raita T., Roth M., Tiira T., Vinogradov Yu. The European Arctic: A laboratory for seismoacoustic studies, Seism. Res.Letters, 2015, Vol. 86, No. 3. pp. 917–928. DOI: 10.1785/0220140230

Godin O.A., Brown M.G., Zabotin N.A., Zabotina L.Y., Williams N.J. Passive acoustic measurement of flow velocity in the Straits of Florida, Geoscience Letters, 2014, Vol. 1, No. 16, pp. 1–7. DOI: 10.1186/s40562-014-0016-6

Godin O.A., Ball J.S., Brown M.G., Zabotin N.A., Zabotina L.Y., Zang X. Application of time-warping to passive acoustic remote sensing, J. Acoust. Soc. Am., 2015, Vol. 137, No. 4. pp. 2362–2362. DOI:

Gorbatikov A.V. Patent RF № 2271554, Byulleten’ izobreteniy (Bulletin of Inventions), 2006, No. 7. [in Russian].

Gorbenko V.I., Zhostkov R.A., Likhodeev D.V., Presnov D.A., Sobiesevich A.L. Feasibility of molecular-electronic seismometers using in passive seismic prospecting: a case study of the deep structure of the upper crust of the Kaluga ring structure by means of microseismic sounding, Seismicheskie Pribory (Seismic devices), 2016, Vol. 52, No. 3, pp. 5–19. [in Russian]. [English Translation will be published in Seismic Instruments, 2017, Vol. 53, No. 3].

Gruzdev P.D., Dmitrichenko V.P., Zhostkov R.A., Kochedykov V.N., Rudenko O.V., Sobisevich A.L., Sobishevich L.E., Sukhoparov P.D. Patent RF No. 2215780, Byulleten’ izobreteniy (Bulletin of Inventions), 2014, No. 15. [in Russian].

Ledenev V.V., Levchenko D.G., Nosov A.V. Analysis of methods for constructing automatic multipurpose bottom stations, Oil and Gas Geology. Theory and Practice (Neftegazovaya geologiya. Teoriya i praktika), 2010, Vol. 5, No. 2, pp. 1. [in Russian].

Levchenko D.G. Methods and means for measuring the parameters of the oceanic environment by automatic multipurpose bottom stations, Oil and Gas Geology. Theory and Practice (Neftegazovaya geologiya. Teoriya i praktika), 2010, Vol. 5, No. 2, pp. 11. [in Russian].

Levchenko D.G., Ledenev V.V., Il’in I.A., Paramo-nov A.A. Long-term seismological sea-bottom monitoring using autonomous bottom stations, Seismic Instruments, 2010, Vol. 46, No. 1, pp. 1–12. DOI:

Levchenko D.G., Lobkovskiy L.I., Ilinskiy D.A., Raushenbach I.B., Ledenev V.V., Roginskiy K.A. Experience of the development and testing of an integrated bottom-cable seismic station, Seismic Instruments, 2015, Vol. 51, No. 3, pp. 242–251. DOI:

Pestsov S.K. Strategy and policy of Russia in the Arctic, Information and Analytical Bulletin “The Map of the Pacific”, 2016, No. 45 (243), pp. 6–19. [Thematic issue “National Strategies for the Development of the Arctic and the Future of the Arctic Region (Based on the materials of the round table)”]. [in Russian].

Petukhov Yu.V., Razin A.V., Sobishevich A.L., Kulikov V.I. Seismoacoustic and Acoustic-Gravitational Waves in Layered Media, Moscow, IPE RAS, 2013. 280 p. [in Russian].

Presnov D.A., Zhostkov R.A., Shurup A.S., Gusev V.A. Dispersion dependences of elastic waves in an ice-covered shallow sea, Acoustical Physics, 2014, Vol. 60, No. 4, pp. 455–465. DOI:10.1134/S1063771014040150

Presnov D.A., Sobisevich A.L., Shurup A.S. Model of the geoacoustic tomography based on surface-type waves, Physics of Wave Phenomena, 2016, Vol. 24, No. 3, pp. 249–254. DOI:

Presnov D.A., Zhostkov R.A., Shurup A.S., Sobisevich A.L. On-site observations of seismo-
acoustic waves under the conditions of an ice-covered water medium, Bulletin of the Russian Academy of Sciences: Physics. 2017. Vol. 81, No. 1. pp. 68–71.

Rogozhin E.A., Antonovskaya G.N., Kapustian N.K. Current state and prospects of the development of an Arctic seismic monitoring system, Seismic Instruments, 2016, Vol. 52, No. 2, pp. 144–153. DOI:

Shabalina A.S., Zaitsev D.L., Egorov E.V., Egorov I.V., Antonov A.N., Bugaev A.S., Agafonov V.M., Krishtop V.G. Modern measuring instruments based on molecular electronic transducers, Uspekhi sovremennoi radioelektroniki (Achievments of Modern Radioelectronics), 2014, No. 9, pp. 33–47. [in Russian].

Suhoparov P.D., Dmitrichenko V.P., Presnov D.A., Sobisevich A.L., Sobishevich L.E. Patent RF no. 2594663, Byulleten’ izobreteniy (Bulletin of Inventions), 2016, No. 23. [in Russian].

Tsukanov A.A., Gorbatikov A.V. Microseismic sounding method: implications of anomalous Poisson ratio and evaluation of nonlinear distortions, Izvestiya. Physics of the Solid Earth. 2015, Vol. 51. No. 4. pp. 548–558. DOI:

Vinogradov Yu.A., Asming V.E., Baranov S.V., Fedorov A.V., Vinogradov A.N. Seismic and infrasonic monitoring of glacier destruction: A pilot experiment on Svalbard, Seismic Instruments, 2015, Vol. 51, No. 1, pp. 1–7. DOI:

Walter F., Roux P., Roeoesli C., Lecointre A., Kilb D., Roux P-F. Using glacier seismicity for phase velocity measurements and Green’s function retrieval, Geophysical Journal International, 2015, Vol. 201, No. 3, pp. 1722–1737. DOI:

Woolfe K.F., Lani S., Sabra K.G., Kuperman W.A. Monitoring deep-ocean temperatures using acoustic ambient noise, Geophys. Res. Lett., 2015, Vol. 42, No. 8, pp. 2878–2884. DOI: 10.1002/2015GL063438

Yanovskaya T.B. Surface-Wave Tomography in Seismological Studies, SPb .: Nauka, 2015, 164 p. [in Russian]. ISBN 978-5-02-039556-5

Zhostkov R.A., Presnov D.A., Shurup A.S., Sobisevich A.L. Comparative study of deep structures by means of passive microseismic sounding and seismic tomography, Bulletin of the Russian Academy of Sciences: Physics, 2017, Vol. 81, No. 1, pp. 64–67. DOI:

Zhostkov R.A., Presnov D.A., Shurup A.S., Sobisevich A.L. Comparison of the results of statistical and dispersion approaches in the study of the deep structure of the Earth on the example of the Hawaiian plume, Uchenye zapiski fizicheskogo faculteta, Moscow State University, 2016, No. 5, pp. 165406-1–165406-4. [in Russian].

Zhostkov R.A., Presnov D.A., Sobisevich A.L. Deve-lopment of the method of microseismic sounding, Vestnik KRAUNTS. Series of Earth Science. 2015. Vol. 2, No. 26, pp. 11–19. [in Russian].


About the authors


SOBISEVICH Alexey Leonidovich  Doctor of Physical and Mathematical Sciences, Corresponding Member of the Russian Academy of Sciences, Head of the Laboratory, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: (499) 254-30-60. E-mail:


PRESNOV Dmitry Alexandrovich  Candidate of Physical and Mathematical Sciences, Research Associate, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: (499) 254-30-60.


ZHOSTKOV Ruslan Aleksandrovich  Candidate of Physical and Mathematical Sciences, Research Associate, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: (499) 254-30-60.
E-mail: (corresponding author)


SOBISEVICH Leonid Evgenievich — Doctor of Technical Sciences, Chief researcher, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: (499) 254-30-60. E-mail:


SHURUP Andrey Sergeevich — Candidate of Physical and Mathematical Sciences, Associate Professor of the Acoustics Department, Physics Faculty of Lomonosov Moscow State University. 119991, Moscow, Leninskie gory 1, stroenie 2; Engineer, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: (499) 254-30-60. E-mail:


LIKHODEEV Dmitry Vladimirovich  Candidate of Physical and Mathematical Sciences, Senior Researcher, Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. 123242, Moscow, ul. Bolshaya Gruzinskaya 10, stroenie 1. Tel.: (499) 254-30-60.


AGAFONOV Vadim Mikhailovich  Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Vacuum Electronics, Moscow Institute of Physics and Technology, 141701, Moscow Region, Dolgoprudny, Institutskii per. 9. E-mail: